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Abstract

Although remarkable progress has been made on single im-
age super-resolution due to the revival of deep convolutional
neural networks, deep learning methods are confronted with
the challenges of computation and memory consumption in
practice, especially for mobile devices. Focusing on this is-
sue, we propose an efficient residual dense block search al-
gorithm with multiple objectives to hunt for fast, lightweight
and accurate networks for image super-resolution. Firstly, to
accelerate super-resolution network, we exploit the variation
of feature scale adequately with the proposed efficient resid-
ual dense blocks. In the proposed evolutionary algorithm, the
locations of pooling and upsampling operator are searched
automatically. Secondly, network architecture is evolved with
the guidance of block credits to acquire accurate super-
resolution network. The block credit reflects the effect of cur-
rent block and is earned during model evaluation process. It
guides the evolution by weighing the sampling probability of
mutation to favor admirable blocks. Extensive experimental
results demonstrate the effectiveness of the proposed search-
ing method and the found efficient super-resolution models
achieve better performance than the state-of-the-art methods
with limited number of parameters and FLOPs.

Introduction
Single image super-resolution (SISR) is to generate a high-
resolution image from its degraded low-resolution version.
It has broad applications in photo editing, surveillance and
medical imaging. SISR is hard due to the fact that recon-
structing high resolution image from a low resolution image
is a many-to-one mapping. To address this ill-posed inverse
problem, various methods were introduced like interpolation
based methods, dictionary-based methods and deep learning
based methods.

In recent years, convolutional neural network-based
(CNN-based) super-resolution methods have been exten-
sively studied and have achieved tremendous improvement
in terms of peak signal-to-noise (PSNR). From the pioneer-
ing SRCNN (Dong et al. 2014) to the most current RDN
(Zhang et al. 2018b), the overall performance of image
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super-resolution has dramatically boosted, and with it come
the increases of the number of parameters and the amount of
computation. For example, RDN contains 22M parameters
and requires 10, 192G FLOPs (floating point operations).
This severely restricts CNN-based super-resolution meth-
ods to be deployed on mobile devices that possess limited
computing and storage resources. It is therefore urgent and
important to develop fast, lightweight and accurate super-
resolution networks for real-world applications.

A natural idea to address the aforementioned challenges is
designing efficient operator or block in the networks (Zhang
et al. 2018a; Wang et al. 2018a; 2018b). Recursive oper-
ator has been widely investigated to reduce redundant pa-
rameters of super-resolution network, such as DRCN (Kim,
Kwon Lee, and Mu Lee 2016b), DRRN (Tai, Yang, and
Liu 2017), and MemNet (Tai et al. 2017). In addition, re-
searchers have tried to construct efficient super-resolution
blocks with squeeze operations and group operations (Ahn,
Kang, and Sohn 2018; Shi et al. 2016). However, blocks
in a hand-crafted super-resolution network usually share the
same architecture, which might not always be an optimal so-
lution for the task, as the flexibility of the block and capacity
of the whole network could be decreased.

Given proper search space, neural architecture search
(NAS) is helpful in deriving the optimal architectures for
different tasks. Recently, this automation has led to state of
the art accuracy on classification problems (Zoph et al. 2018;
Real et al. 2019; Liu, Simonyan, and Yang 2018). This suc-
cess has been reproduced in many other computer vision
tasks, e.g. segmentation (Liu et al. 2019) and image restora-
tion (Suganuma, Ozay, and Okatani 2018). NAS has rarely
been investigated for lightweight image super-resolution.
The most relevant work here may be the MoreMNAS (Chu
et al. 2019), which utilized multi-objective NAS to pursue
the tradeoff between restoration and simplicity of super-
resolution models. However, the efficiency of network is im-
posed strict restriction by the large amounts of computation
of the whole nonlinear mapping process, which is computed
on the same scale entirely. In addition, it searches architec-
ture on inner cell level and outer network level simultane-
ously with basic operators. It is time-consuming and harmful
to mobile devices due to the non-regularized combinations



of arbitrary basic operators (Ma et al. 2018).
In this paper, we propose the efficient residual dense block

search algorithm for image super-resolution. Pooling oper-
ation is a double-edged sword in image super resolution.
It often leads to the information loss but will reduce the
computation in the subsequent process and realize accelera-
tion. Instead of eschewing the pooling as classical methods,
we integrate local residual learning designed in a contextual
residual dense block and global feature fusion to fix the de-
fect of the pooling. In addition, shrink residual dense block
and group residual dense block are developed to further re-
duce parameters. Given these three types of building blocks,
we resort to evolutionary algorithm to search for the opti-
mal network architecture for image super-resolution. Block
credit is introduced to measure the effectiveness of a block,
and guides the mutation by weighing the sampling proba-
bility of mutation to favor admirable block. The proposed
method exploits valuable information from model evaluation
process to guide the network evolution for effective super-
resolution network and convergence acceleration. Experi-
mental results demonstrate the effectiveness of the proposed
searching method and the found efficient super-resolution
models achieve better performance than the state-of-the-art
methods with limited number of parameters and FLOPs.

Related Works
Deep learning based super-resolution methods have
achieved significant promotion and been investigated ex-
tensively. (Dong et al. 2014) firstly employed convolutional
neural network with three layers into image super-resolution
task and made a noticeable progress. After that, researchers
explored deeper and deeper network with the assistance
of shortcut operator and dense connection, like VDSR
(Kim, Kwon Lee, and Mu Lee 2016a), RAAN (Xin et
al. 2019), EDSR (Lim et al. 2017) and RDN (Zhang et
al. 2018b). Another direction is designing lightweight
and fast super-resolution for practical applications. FS-
RCNN (Dong, Loy, and Tang 2016) and ESPCN (Shi et
al. 2016) delayed the position of upsampling operator to
accelerate super-resolution network. Recursive operator is
widely employed in super-resolution to reduce parameters
of network (Tai, Yang, and Liu 2017; Tai et al. 2017).
Besides, several works (Ahn, Kang, and Sohn 2018;
Hui, Wang, and Gao 2018) explored light-weight and fast
super-resolution model with squeeze operation and group
convolution. Recently, researchers attempted to apply NAS
to super-resolution task (Chu et al. 2019).

Super-resolution Neural Architecture Search
To acquire fast, lightweight and accurate super-resolution
networks, evolution-based NAS algorithm are employed and
adapted to super-resolution task. The diagram of the pro-
posed method is illustrated in Fig. 1.

Efficient Residual Dense Blocks
Proper search space is crucial to the performance of NAS
algorithm. The success of NAS method based on meta-
architectures (e.g. block/cell) attracts us to extend it to super-

resolution architecture search, which is efficient and effec-
tive in many tasks (Tan et al. 2018; Guo et al. 2019). Besides,
blocks are widely used and investigated in super-resolution
task. Recently, RDN (Zhang et al. 2018b) has exhibited the
power of residual dense block (RDB). However, weights and
computation of block grows rapidly along with the increas-
ing of convolution number due to the dense concatenation.
Searching for fast and lightweight network, lean block is es-
sential. Considering this issue, this paper proposes three lean
residual dense blocks, which reduce the parameter and com-
putation of block in three aspects: channel number, convolu-
tion filter and feature scale.

Shrink Residual Dense Block (SRDB) Massive parame-
ters and computations of block are mainly because of swift
growth of channel number. An intuitive idea to reduce the
parameter and computation is reducing the channel number.
Here, we employ 1× 1 convolution to squeeze the channels
of feature maps to construct a lean block. The architecture
of SRDB is illustrated in Fig. 2.

Group Residual Dense Block (GRDB) Another way is
reducing the parameters of convolution filter. Group convo-
lution (Zhang et al. 2018a) is employed to construct lean
block. Since the input of convolution concatenates multiple
preceding feature maps, if we directly utilize the group con-
volution in block, a single output channel cannot see all pre-
ceding layers’ features. Therefore, the channel shuffle strat-
egy (Zhang et al. 2018a) is utilized before group convolution
to alleviate above issue. The architecture of GRDB is illus-
trated in Fig. 2.

Contextual Residual Dense Block (CRDB) The third way
to depress the computation of block is reducing the scale of
feature. Different from the classification task, pooling oper-
ator is seldom used in super-resolution networks. It’s mainly
because pooling operation ignores information and might
deteriorate the performance of super-resolution without el-
egant design. To alleviate this issue, we adopt local residual
connection and block feature concatenation to transit origi-
nal information for image reconstruction, see Fig. 1. In addi-
tion to reducing computation, pooling operator also expands
the receptive field to obtain more context information, which
is conducive to reconstruction high-resolution image. Be-
sides, recursive operator (Tai, Yang, and Liu 2017) is em-
ployed to further amplify the receptive field. Hence, the pro-
posed block is named as Contextual Residual Dense Block
(CRDB). The architecture of CRDB is illustrated in Fig. 2.
CRDB contains four components: pooling, recursive convo-
lutional layer, upsample operator and local residual operator.
Sub-pixel convolution (Shi et al. 2016) is used to upsample
the feature maps for feature fusion due to its efficiency.

Efficiency Analysis The effect of group convolution of
GRDB is analyzed deeply in literature (Ahn, Kang, and
Sohn 2018). Here, we place emphasis on the effect of
CRDB, which contains three advantages: reducing compu-
tation, expanding receptive field and decoupling FLOPs and
parameter. Firstly, pooling operator reduces FLOPs by de-
creasing the size of feature maps. Let K be the kernel size
and C be the input convolution number of CRDB. Both the
width and height of feature maps of general RDB are S and
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Figure 1: The diagram of super-resolution neural architecture search. It employs the proposed efficient residual dense blocks to
exploit the variation of feature scale adequately for efficient super-resolution network.
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Figure 2: The architecture of proposed efficient residual dense block (SRDB, GRDB, CRDB).

the growth rate (output channel number of eachK×K con-
volution layer) is Gr. For simple, the input and output chan-
nel number of CRDB is alsoGr. The recursive number isR.
Then, the FLOPs of general RDB is:

FLOPsrdb = 2G2
rS

2(CK2 + C(C + 3)/2), (1)

The FLOPs of CRDB is:

FLOPscrdb = 2G2
rS

2(CK2R/4+(C+7)(C+1)/8), (2)

If R = 1, then the FLOPscrdb = FLOPsrdb/4 + (5C +
7)G2

rS
2/4 ≈ FLOPsrdb/4. It reveals that pooling opera-

tor approximately reduces 75% FLOPs of RDB. If R = 4,
the FLOPscrdb is still less than FLOPsrdb. Secondly, both
pooling operator and recursive operator could expand the re-
ceptive field. Finally, without pooling and recursive opera-
tor, the FLOPs and parameters of network is linearly corre-
lated: FLOPs = S2×Param, which is also verified in lit-
erature (Chu et al. 2019). In contrast, our method allows evo-
lutionary algorithm search the architecture space with three
independent objectives: PSNR, FLOPs and parameter.

Efficient Residual Dense Block Search
Evolutionary algorithm is employed to search the neural
architecture because of its excellent performance (Real et
al. 2019). Neural architecture search is confronted with
the challenge of high computational consumption. In con-
trast with classification, this issue is more serious in super-
resolution neural architecture search. Because feature maps
are computed in the same scale or high resolution scale,
which consumes more computation in model evaluation pro-
cedure. It requires us to employ the characteristics of super-
resolution to alleviate this issue.

Search Space Super-resolution neural network is usually
composed of three stages: feature extraction, nonlinear map-
ping and reconstruction (Dong et al. 2014). This work
mainly focuses on searching the architecture of backbone
(nonlinear mapping) which is critical to high-quality super-
resolution model, see Fig. 1. The block number and architec-
ture of each block in backbone are searched automatically.
The architecture contains block type and hyperparameter
(i.e. number of convolutional layers, channel number of con-
volutional layer, recursive number, output channel number
of block). To accelerate architecture searching, the type of
block is quantized as the proposed three lean blocks: SRDB,
GRDB and CRDB. Searching the type and hyperparameter
of block could choose the location and convolution num-
ber of low resolution features automatically, which is con-
ducive to exploiting the redundant computation of feature
scale and accelerating super-resolution network. Each block
is encoded as {block state, block type, hyperparameter},
which is corresponding to the whole search space (block
number, block type and the hyperparameter of block). The
detail of search space is introduced in section experiments.

Evolutionary Algorithm The model training procedure
possesses abundant information which is conducive to facil-
itating the evolution. It attracts us to exploit the information
of learning procedure and investigate how to guide the evo-
lution. Inspired by intermediate supervision in the middle
of architecture (Xu et al. 2017; Lai et al. 2017), we employ
joint loss to acquire the evaluation of the whole network and
each block simultaneously during model evaluation proce-
dure. On this basis, we propose a heuristic approach to guide
its mutation operation by taking into account appearance of



genes (choice blocks) in the evolved chromosome (architec-
tures). The whole algorithm is shown in Algorithm 1.

The evolutionary algorithm maintains a population of
models H in which each individual h is initialized by ran-
domly selecting a choice block in uniform distribution for
each position. To evolve the population, each individual is
trained with training set and tested on validation set to com-
pute fitness. In super-resolution, the fitness of model is mea-
sured by PSNR between high resolution images and super-
resolution images on the validation set. After this, we select
the top T elites as elitism according to the fitness of popula-
tion and evolve it in cycles. The next generation are gener-
ated with two operation: crossover and guided mutation. The
parents of crossover are selected as the strategy of roulette
wheel selection.

Algorithm 1 Guided evolutionary algorithm
Input: number of generations G, population size λ, muta-

tion probability r, elitism number T , Training SetDtrain,
Validation Set Dval.
Initialization: (i) population H , (ii) block credit matrix
Mb, (iii) fitnesses FH of all individuals in population.
while g < G do

elitism Eg ← select({H,Eg−1}, FH , T )
for i = 1 to λ

2 do
childreni ← GuidedMutate(Eg, r,Mb)
childrenλ

2 +i← Crossover( {H,Eg−1} )
end for
H ← children
models← Train(H , Dtrain)
FH ,M

′
b← Evaluate(models, Dval)

Mb ← update(Mb, M ′b) as Eq. 4
g = g + 1

end while
Output: elitism Eg

Block Credit The credit of a block is defined as perfor-
mance gain by adding it on top of preceding blocks, which
demonstrates its effectiveness. The credit of block is defined
as follows:

c = fadd − fbef , (3)

where fadd and fbef denote the fitness (PSNR) of network
with current block and without current block on the end of
network, respectively. It is obvious that block credit is re-
lated to current block and the preceding blocks. Hence, the
block credit is redefined as cm = 1

N

∑N
i=1 ci, where ci de-

notes block credit with different combination of preceding
blocks andN denotes the number of combination. The block
credits of different block or different location (depth) are dif-
ferent, hence the block credit matrix Mb is composed of dif-
ferent block credits cm(j, l), where j denotes block index
and l denotes the index of depth.

To acquire the block credit and model fitness simultane-
ously during individual performance evaluation procedure,
we employ an adaptive joint loss combining all intermediate
loss. It is defined as: L =

∑L
l=1 ηl(t)Ll, where Ll denotes

the L1 loss between the reconstructed super-resolution im-

ages of block l and high-resolution images. η is the weight
coefficient of each block and t is the training epoch which
controls the distribution of blocks’ coefficients. Computing
all combinations’ fitness of preceding blocks is time con-
suming, hence the block credit are computed approximately
and updated constantly during evolution procedure. During
the evolution procedure, we update the block credit matrix
Mb as follows:

c′m(j, l) = αcm(j, l) + (1− α)c(j, l), (4)

where α is the update coefficient of block fitness.
Guided Mutation In general mutation, it is common to

choose a block architecture randomly instead of old archi-
tecture. It is a good idea when there is no other information
about block except architecture, although the mutation has
no direction on the whole evolution procedure which results
in time-consuming search. However, we acquire the block
credits during model evaluation procedure, which can be
used to guide the mutation to accelerate searching and find
better architecture. Inspired by parent selection strategy of
crossover, we propose a novel guided mutation: the archi-
tecture of mutated block is selected by typical proportionate
roulette wheel method according to block credits. This strat-
egy favors the block architecture with higher credit in search
space, which is conducive to finding better architecture. To
enhance the diversity of different block, the block credit is
normalized as follows:

cn(j, l) = cm(j, l)− (min
l
(cm(j, l))− ε), (5)

where ε is a tiny constant and cn denotes normalized block
credit. If the block is in layer lb, then the probability that
block bj is selected is p, which is defined as follows:

pselect(bj |l = lb) =
cn(j, lb)∑Nb
j=1 cn(j, lb)

, (6)

whereNb denotes the number of block architecture in search
space.

Performance Evaluation For single image super-
resolution, the performance of model is usual evaluated
by PSNR and SSIM (structural similarity index) in the
literature. During the evolution, PSNR is adopted to
evaluate the accuracy of searched architecture. To search
for lightweight and fast model, we evaluate the parameter
number of neural network and the computational FLOPs.
It is a typical multi-objective evolution problem. Different
from MoreMNAS (Chu et al. 2019), we add pooling and
recursive operator in the search space, which decouples
the FLOPs and parameter number. Our method offers lean
networks with different proportions of FLOPs and param-
eter. For example, mobile phone possesses comparatively
sufficient memory, but requires short runtime.

Solving multi-objective evolution problem, two strategies
can be employed: NSGA-II method (Chu et al. 2019) and
converting the multi-objective evolution to a single objective
problem. NSGA-II method offers the whole Pareto optimal-
ity and the objective function is defined as:

max
net∈Q

objs(net) ={psnr(net),−param(net),

− flops(net)|net ∈ Q},
(7)



Sometimes, we may only need the best model with the
constraint on FLOPs and parameters. Hence, we can con-
strain the FLOPs and parameters, and maximize the PSNR
of model, which is defined as follows:

max
net∈Q

psnr(net)

s.t. param(net) < Wnet, f lops(net) < Vnet
(8)

where Wnet and Vnet are the upper constraints of parameter
and FLOPs, respectively.

Experiments
Datasets and Implementation
Datasets Most widely used dataset DIV2K (Timofte et al.
2017) is adopted in this paper. It consists of 800 training im-
ages and 100 validation images. During the evolution and
retrain procedures, the SR models are trained with DIV2K
training set and evaluated with validation set. To test the per-
formance of the model, we employ four benchmark datasets:
Set5, Set14, B100 and Urban100. The super-resolution re-
sults are evaluated with PSNR and SSIM on Y channel of
YCbCr space.

Searching Detail For the proposed evolutionary algo-
rithm, the detail search space is: block type {S,G,C},
convolutional layer number {4, 6, 8}, growth rate and out-
put channel number {16, 24, 32, 48, 64}, recursive number
{1, 2, 3, 4}. The recursive number 1 denotes a normal con-
volution layer. The number of children is 16 which is com-
posed of 8 children mutated from elitism and 8 children
crossovered with parents. The number of generation G is
40 and the mutation probability is 0.2. The coefficient α
is 0.9 and constant ε is 0.001. Coefficient η(t) is updated
every 10 epochs. ηL is initialized with 0.0625 and multi-
plied 2 every period. All of the other coefficients ηl are
1−ηL
L−1 . To enhance the difference of block credits, we em-

ploy the square of block credit to guide the mutation, i.e.
pselect(bj) = c2n(j)/

∑Nb
j=1 c

2
n(j). For the phenotype, the

maximum block number is 20 and the minimum active block
number is 5. During evolution, we crop 32×32 RGB patches
from LR image as input for training. We train each model for
60 epoch with a mini-batch of size 16. The evolution proce-
dure is performed on single Tesla V100 with 8 GPUs and
spends about one day.

Retraining Detail After the evolution stage, the selected
super-resolution model is retrained on DIV2K training set.
We put 64 × 64 RGB patches of LR images into net-
work for training. The training data augmented with random
crop, horizontal flips and 90 degree rotation. Our models
are trained with ADAM optimizer with setting β1 = 0.9,
β2 = 0.999, and the initialized learning rate is 10−4. The
learning rate decreases half for every 300 epochs during the
whole 1000 training epoch.

Ablation Study of Efficient Block
Extensive ablation experiments are designed to evaluate the
effectiveness of the proposed three efficient super-resolution
blocks. Firstly, we construct a standard light RDN with
1017K parameter as the basic model, which contains 4

Table 1: Ablation investigation of the proposed efficient
super-resolution blocks (’O’ denotes no recursive operator,
’L’,’C’ and ’F’ denotes the arrangement of CRDB ).

Model Multi- Params Set14 B100 Urban100
Adds(G) (K) PSNR PSNR PSNR

RDN (base) 235.6 1017 33.44 32.02 31.94
GRDN 235.6 1017 33.55 32.12 32.12
SRDN 235.8 1019 33.54 32.13 32.15

CRDN-O-L 163.9 991 33.46 32.08 31.81
CRDN-O-C 163.9 991 33.50 32.09 31.86
CRDN-O-F 163.9 991 33.52 32.11 31.90

CRDN 225.2 1018 33.57 32.15 32.20
ESRN 226.8 1014 33.71 32.23 32.37

Table 2: Comparison experiments on general mutation and
guided mutation (×2 scale super-resolution).

Mutation Multi- Params Set14 B100 Urban100
Adds(G) (K) PSNR PSNR PSNR

General 228.4 1018 33.65 32.18 32.25
Guided 226.8 1014 33.71 32.23 32.37

RDBs with six convolution layers of 32 channels (growth
rate). Then, we use single type of proposed block to con-
struct super-resolution model without architecture search
and evaluate their performance. In order to be consistent
with previous super-resolution literatures (Ahn, Kang, and
Sohn 2018; Chu et al. 2019), Multi-Adds is employed to
evaluate the computation of models and it is computed with
720p high-resolution image ( i.e. 1280×720). Experimental
results summarized in Table 1 shows that our efficient blocks
achieve better performance than baseline with the constraint
of Multi-Adds and parameters.

We explore and exploit the effectiveness of pooling and
recursive operator for super-resolution with experiments.
We gradually replace the SRDB with CRDB-O (without
recursive) in SRDN (contains 10 SRDBs with 6 convolu-
tion layers of 32 channels), and evaluate the performance
of each variant model. Figure 3 illustrates the ablation re-
sults. It shows that a few CRDB-O blocks hardly reduce the
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Figure 3: Performance of super-resolution model with dif-
ferent number of pooling blocks (’O’ denotes no recursive
operator in CRDB).



Table 3: Quantitative results of the state-of-the-art super-resolution models on ×2 scale super-resolution task (the best results
are emphasized with bold).

Type Model Multi-Adds Parameter Set5 Set14 B100 Urban100
(G) (K) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Slow

VDSR (Kim et al. 2016a) 612.6 665 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140
DRCN (Kim et al. 2016b) 17974.3 1774 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133
MemNet (Tai et al. 2017) 2662.4 677 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.51/0.9312
RDN (Zhang et al. 2018b) 5096.2 22114 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353

Fast

CARN (Anh et al. 2018) 222.8 1592 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256
FALSR-A (Chu et al. 2019) 234.7 1021 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256

ESRN (ours) 228.4 1014 38.04/0.9607 33.71/0.9185 32.23/0.9005 32.37/0.9310
ESRN-F (ours) 128.5 1019 37.93/0.9602 33.56/0.9171 32.16/0.8996 31.99/0.9276

SRCNN (Dong et al. 2014) 52.7 57 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946
Very CARN-M (Ahn et al. 2018) 91.2 412 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9144
Fast FALSR-B (Chu et al. 2019) 74.7 326 37.61/0.9585 33.29/0.9143 31.97/0.8967 31.28/0.9191

ESRN-V (ours) 73.4 324 37.85/0.9600 33.42/0.9161 32.10/0.8987 31.79/0.9248

0 5 10 15 20 25 30 35 40
Iterations of Evolution

33.08
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PS
NR

General mutation
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Figure 4: Evolutionary architecture search with different
mutation strategies.

PSNR and effectively reduce the Multi-Adds. Thanks to the
local residual in block and global concatenation transmitting
the original information to the latter block, it alleviates the
shortcoming of pooling operator. We also replace the SRDB
with the CRDB of recursive 3 to verify the effectiveness of
combination of pooling operator and recursive operator. Ex-
perimental results in Table 1 and Fig. 3 reveal that CRDB
effectively improve performance with the constraint of pa-
rameter and Multi-Adds. Pooling and recursive operator can
effectively expand the receptive field, which is beneficial to
predicting the high resolution pixel considering the contex-
tual information. However, when we add too many CRDBs
(larger than 5), the PSNR indicator decreases rapidly.

In addition, we carried out experiments to evaluate the in-
fluence of location and arrangement of CRDB and SRDB.
The results in Table 1 reveals that first four CRDBs (CRDN-
O-F) and cross assignment (CRDN-O-C) achieves better
performance than last four CRDBs (CRDN-O-L) assign-
ment. Hence, NAS is adopted to arrange the block type and
block parameter of each block for optimal performance. An-
alyzing the generated networks, we also found that different
types of block should cross arrangement. Table 1 shows that

NAS improves the SR performance with a margin.

Analysis of Guided Evolutionary Algorithm
We compare the training procedures of conventional evolu-
tionary algorithm and the proposed guided evolutionary al-
gorithm for searching efficient SR networks using the same
search space and experimental settings. Figure 4 illustrates
the progress of neural architecture during evolution process,
in which each dot denotes the PSNR of an individual elite
network in a certain evolution iteration. It reveals that guided
mutation effectively accelerates the evolutionary algorithm
and finds better network architecture compared with gen-
eral random mutation. Besides, Table 2 shows the final per-
formance of searched super-resolution models with different
mutation strategy. Guided evolution achieves better perfor-
mance, it’s mainly because the guided mutation induces the
algorithm to explore blocks with higher credit preferentially.

Comparison with State-of-the-art Methods
In order to compare the proposed approach with other
prominent methods, we search one medium-size super-
resolution model, ESRN, and one mini-size super-resolution
model, ESRN-V. ESRN contains 1014K parameter and
ESRN-V contains 324K parameters. These two super-
resolution models have the similar number of parameters
and Multi-Adds to that of CARN (Ahn, Kang, and Sohn
2018), SelNet (Choi and Kim 2017) and FALSR (Chu et
al. 2019). The performance of different models are executed
with qualitative and quantitative comparison.

We employ two typical image quality metrics, PSNR
and SSIM, to evaluate the performance of super-resolution
model. The quantitative comparisons of the performances
over the benchmark datasets are summarized in Table 3 (×2
scale) and Table 4 (×3 and ×4 scale). It reveals that the
proposed method (ESRN, ESRN-V) achieves better perfor-
mance than other prominent approaches on all benchmark
datasets in the case of the similar amount of parameters and
Multi-Adds. In ×2 scale, our medium and mini ESRN mod-
els outperform FALSR (Chu et al. 2019) by a margin of 0.44



Table 4: Quantitative results of the state-of-the-art super-resolution models on ×3 and ×4 scale.

Scale Model Multi-Adds Parameter Set5 Set14 B100 Urban100
(G) (K) PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

×3

SRCNN (Dong et al. 2014) 52.7 57 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989
VDSR (Kim et al. 2016a) 612.6 665 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279
MemNet (Tai et al. 2017) 2662.4 677 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376
SelNet (Choi et al. 2017) 120.0 1159 34.27/0.9257 30.30/0.8399 28.97/0.8025 -
CARN (Ahn et al. 2018) 118.8 1592 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493

CARN-M (Ahn et al. 2018) 46.1 412 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385
ESRN (ours) 115.6 1014 34.46/0.9281 30.43/0.8439 29.15/0.8072 28.42/0.8579

ESRN-F (ours) 71.7 1019 34.32/0.9268 30.35/0.8410 29.09/0.8046 28.11/0.8512
ESRN-V (ours) 36.2 324 34.23/0.9262 30.27/0.8400 29.03/0.8039 27.95/0.8481

×4

SRCNN (Dong et al. 2014) 52.7 57 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221
VDSR (Kim et al. 2016a) 612.6 665 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524
MemNet (Tai et al. 2017) 2662.4 677 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630
SelNet (Choi et al. 2017) 83.1 1417 32.00/0.8931 28.49/0.7783 27.44/0.7325 -
CARN (Ahn et al. 2018) 90.9 1592 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837

CARN-M (Ahn et al. 2018) 32.5 412 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694
ESRN (ours) 66.1 1014 32.26/0.8957 28.63/0.7818 27.62/0.7378 26.24/0.7912

ESRN-F (ours) 41.4 1019 32.15/0.8940 28.59/0.7804 27.59/0.7354 26.11/0.7851
ESRN-V (ours) 20.7 324 31.99/0.8919 28.49/0.7779 27.50/0.7331 25.87/0.7782

Ground-truth HR

HR Bicubic CARN-M CARN
(PSNR, SSIM) (24.01, 0.7460) (21.36, 0.6834) (24.02, 0.8285)

LapSRN VDSR ESRN-V (ours) ESRN (ours)
(17.97, 0.4665) (19.80, 0.5637) (26.13, 0.8976) (27.42, 0.9242)

Figure 5: Visual qualitative comparison on ×3 scale (barbara from Set14).

PSNR and 0.51 PSNR on Urban100 dataset with fewer pa-
rameter and Multi-Adds, respectively. The success is mainly
due to the proposed blocks and the guided algorithm.

Different from FALSR (Chu et al. 2019), relationship of
the parameter and Multi-Adds are decoupled by pooling op-
erator. Hence, we can constrain much fewer Multi-Adds to
search for a fast medium super-resolution model, ESRN-F.
The experimental results in Table 3 shows that ESRN-F even
achieves a little better performance than FALSR-A (Chu et
al. 2019) on all four benchmark datasets with approximate
half Multi-Adds. Hence, our evolutionary algorithm could
search for a very efficient super-resolution model.

In Fig. 5, we visually illustrate the qualitative compar-
isons on barbara of Set14 dataset in ×3 scale. It’s obvi-
ous that the reconstructed images of other methods con-
tain noticeable artifacts and blurred edges. In contrast, our
super-resolution images are more faithful to the ground truth
with clear edges. Our ESRN recover image better than other

prominent models, since it considers more contextual infor-
mation with pooling and recursive operator.

Conclusion
In this paper, an efficient residual dense block search al-
gorithm is proposed to hunt for fast, lightweight and accu-
rate super-resolution networks. Three efficient blocks are de-
signed as basic choice components, which reduce the param-
eter and computation of network in three aspects: channel
number, convolution filter and feature scale. With the assis-
tance of evolutionary algorithm, we exploit the variation of
feature scale adequately to accelerate super-resolution net-
work. In addition, block credit is introduced to measure the
effectiveness of a block and utilized to guide evolution for
searching acceleration. Both quantitative and qualitative re-
sults demonstrate the advantage of the found network over
other state-of-the-art super-resolution methods with specific
requirement on number of parameters and FLOPs.
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